This sublime adventure fantasy, replete with proto-steampunk imagery, touchingly conveys a message of ecological awareness. A young girl drops from the sky and lands in the arms of orphan Pazu—and not a moment later they’re on the run from a shadowy government agency and a band of pirates, both after the magic crystal she possesses. The chase leads them up and into the clouds to the floating airship Laputa, an overgrown fortress inhabited by gargantuan, dilapidated robots.
The film tells the story of Chronos, the personification of time and the inability to realize his desire to love for a mortal. The scenes blend a series of surreal paintings of Dali with dancing and metamorphosis. The target production began in 1945, 58 years before its completion and was a collaboration between Walt Disney and the Spanish surrealist painter, Salvador Dalí. Salvador Dali and Walt Disney Destiny was produced by Dali and John Hench for 8 months between 1945 and 1946. Dali, at the time, Hench described as a “ghostly figure” who knew better than Dali or the secrets of the Disney film. For some time, the project remained a secret. The work of painter Salvador Dali was to prepare a six-minute sequence combining animation with live dancers and special effects for a movie in the same format of “Fantasia.” Dali in the studio working on The Disney characters are fighting against time, the giant sundial that emerges from the great stone face of Jupiter and that determines the fate of all human novels. Dalí and Hench were creating a new animation technique, the cinematic equivalent of “paranoid critique” of Dali. Method inspired by the work of Freud on the subconscious and the inclusion of hidden and double images. Dalí said: “Entertainment highlights the art, its possibilities are endless.” The plot of the film was described by. Dalí as “A magical display of the problem of life in the labyrinth of time.” Walt Disney said it was “A simple story about a young girl in search of true love.”
Its roots “anima” and “animus” are Latin for breath,soul, and mind.”
Discussions of animation often involve concepts of
>>μεταμόρφωση
>>ανθρωπομορφισμόanthropomorphism
>>ριζική μεταμόρφωσηtransmogrification
>> απο τους νόμους του φυσικού πεδίου.
>>φαντασία
>>μίμηση mimesis
>>πολυμορφικόπαραλογισμότωνσωμάτων
the polymorphous perversity of bodies
>>παραδοξότητακαι παραλογισμός.
“animation” –
“the act of producing ‘moving pictures’;
the technique, by means of which movement is given,
on film, to a series of drawings
(esp. for an animated cartoon)”
•
Τα animated cartoons
φαίνεται σαν να έχουν ενσωματώσει
τη θεωρία του Einstein
για Ασυνέχεια στο χρόνο και στο χώρο
ΤΑ ΥΛΙΚΑ ΠΟΥ ΑΡΧΙΚΑ ΧΡΗΣΙΜΟΠΟΙΗΘΗΚΑΝ
Drawings,
cut-outs,
models,
dolls,
puppets,
clay,
projected silhouettes, and
real objects,
including
fluids,
colored gases and smoke,
Hand-drawn animation films are made by
drawing,
etching,
scratching,
painting or
attaching items directly onto a film’s surface without the use of a camera. computer animation
Chapters
1.Pre-Production
1.1.Introduction
1.2.Storyboarding
1.3.Character and Model Design
1.4.Sound Design
1.5.Technical Tests
1.6.Production Scheduling
2.Modeling Basics
2.1.Introduction
2.2.Polygonal Modeling
2.3.Splines and Patches
2.4.Coordinate Systems
2.5.Viewing Windows
2.6.Geometric Primitives
2.7.Transformations
2.8.Common Modeling Techniques
2.9.Hierarchies
2.10.Booleans and Trims
2.11.Basic Deformations
3.Rendering Basics
3.1.Introduction
3.2.The Camera
3.3.Lights
3.4.Surface Characteristics
3.5.Shading Algorithms
3.6.Rendering Algorithms
3.7.Background Images
3.8.Surface Texture Mapping
3.9.Solid Texture Mapping
3.10.Final Rendering
4.Animation Basics
4.1.Introduction
4.2.Keyframing
4.3.Interpolations
4.4.Parameter-curve Editing
4.5.Dope Sheet Editing
4.6.Forward Kinematics
4.7.Inverse Kinematics
4.8.Motion Paths
4.9.Shape Deformations
4.10.Camera Animation
4.11.Animating Lights and Surface Properties
4.12.Pose-based Animation
5.Advanced Modeling
5.1.Introduction
5.2.Virtual Sculpting
5.3.Digitizing Techniques
5.4.Procedural Modeling
5.5.Stitched Patches
5.6.Subdivision Surfaces
5.7.Displacement Mapping
5.8.Hair and Fur
5.9.Paint-based Modeling
5.10.Higher-level Primitives
6.Advanced Rendering
6.1.Introduction
6.2.Atmospheric Effects
6.3.Fractals
6.4.Lighting Subtleties
6.5.Advanced Texturing
6.6.Texturing Polygons
6.7.Background Shaders
6.8.Non-Photorealistic Rendering
6.9.Reflection Maps and Environment Procedures
6.10.More Rendering Algorithms
6.11.Rendering for Output
7.Advanced Animation
7.1.Introduction
7.2.Animated Fillets
7.3.Limits and Constraints
7.4.Metaballs
7.5.Expressions and Driven Keys
7.6.Motion Dynamics: Principles, Rigid Bodies
7.7.Soft-Body Dynamics
7.8.Particle Systems
7.9.Cloth Dynamics
7.10.Motion Capture
7.11.Camera-Motion Mapping
7.12.Character Rigging: Movement Controls
7.13.Character Rigging: Deformation Controls
7.14.Facial Animation
7.15.Non-Linear Animation
8.Post-Production
8.1.Introduction
8.2.Compositing
8.3.Editing
2-3 έτος2D και 3D animation και montage, τεχνικές stop motion, pixellation κ.α.
Σχέδια κλειδιά κίνησης και ενδιάμεσα, οργάνωση του χρόνου.
Το ανθρώπινο περπάτημα
Το ανθρώπινο τρέξιμο και το τρέξιμο στα τετράποδα, εναλλαγή ποδιών
Κινήσεις σε τροχιά
Κινήσεις με φτερά πουλιά, μυθολογικές φιγούρες κλπ
Οι 12 βασικές αρχές του animation
Τεχνικές του animation. Επέκταση χρήσης animation και live action
Τεχνικές stop motion, pixellation
Εργαλεία για την δημιουργία 2D και 3D μοντέλων
4έτος
Διαδραστική σύνθεση εικόνας σε πραγματικό χρόνο
Εισαγωγή στην σύνθεση εικόνας με βάση το Processing
2d και 3D γραφικά με Processing
Βασικές διαδραστικές τεχνικές με Processing
Επικοινωνία με άλλες εφαρμογές μέσω OSC
Aναγνώριση εικόνας και κίνησης από κάμερα μέσω Processing
Εισαγωγή στον προγραμματισμό συνθεσης εικόνας με openFrameworks
Επικοινωνία μεταξύ λογισμικών ήχου και εικόνας σε πραγματικό χρόνο
Ήχος
Εισαγωγή στις αρχές της ψηφιακής σύνθεσης ήχου
Εισαγωγή στον προγραμματισμό ήχου με SuperCollider
Τεχνικές σύνθεσης 1: προσθετική σύνθεση
Μουσικές δομές 1: Εισαγωγή στα patterns
Περιβάλλουσες καμπύλες (Εnvelopes)
Βασικές τεχνικές διάδρασης και Γραφικά εργαλεία διάδρασης
Tεχνικές σύνθεσης 2: Φίλτρα και αφαιρετική σύνθεση
Eργασία με προηχογραφημένα ηχητικά δείγματα (Samples)
get sound forge-vegas// get open source audio programms j
R650 All our o the synesthete subjects(S1–S4, ages 23–33, 1 woman) hadnormal visual acuity and no knownhearing or neurological decits. Theirvisually-induced sound perceptionsoccur automatically, cannot be turnedo, and have been experienced oras long as they can remember goingback into childhood. The percepts aretypically simple, non-linguistic sounds(such as beeping, tapping or whirring)that are temporally associated withvisual fashes or continuous visualmotion. Eye movements over astationary scene (retinal motion) donot typically evoke sound. In dailyexperience, all our subjects aregenerally able to distinguish theirsynesthetic sound percepts rompercepts induced by real auditorystimuli, but occasional conusionexists. We reer to this phenomenonas ‘hearing-motion’ synesthesia, eventhough non-moving visual fashesalso trigger sound perception asdemonstrated next.Our goal was to devise a task orwhich hearing-motion synesthesiawould coner a perormance advantage, as this would bestrong objective evidence or theperceptual experience[4]. Typically(in non-synesthetes), people have anadvantage in judging rhythmic patternso sound compared to equivalentvisual rhythmic patterns[7,8]. We thuspredicted that synesthetes wouldperorm better than controls in a taskinvolving visual rhythmic sequencesbecause synesthetes would not onlysee, but also hear the patterns.
The sound ochange: visually-induced auditorysynesthesiaMelissa Saenz and Christo KochSynesthesia is a benign neurological condition in humans characterized by involuntary cross-activation othe senses, and estimated to aectat least 1% o the population[1].Multiple orms o synesthesia exist,including distinct visual, tactile orgustatory perceptions which areautomatically triggered by a stimuluswith dierent sensory properties[1–6],such as seeing colors when hearingmusic. Surprisingly, there has beenno previous report o synestheticsound perception. Here we report thatauditory synesthesia does indeed existwith evidence rom our healthy adultsor whom seeing visual fashes orvisual motion automatically causes theperception o sound. As an objectivetest, we show that ‘hearing-motionsynesthetes’ outperormed normalcontrol subjects on an otherwisedicult visual task involving rhythmictemporal patterns similar to Morsecode. Synesthetes had an advantagebecause they not could not only see,but also hear the rhythmic visualpatterns. Hearing-motion synesthesiacould be a useul tool or studying howthe auditory and visual processingsystems interact in the brain.ASample ‘same’trial:interval 1:interval 2:Sample ‘different’trial:Sample rhythmic sequence composed of flashes or beeps:20050100Time (ms)interval 1:interval 2:p< 0.0001N.S.Controls(n=10)Synesthetes(n=4)B1009080706050 % c o r r e c tSoundVisionCurrent BiologyFigure 1. Visually-induced auditory synesthesia.(A) Sequences were composed o intermixed long (200 ms) and short (50 ms) duration stimuliseparated by blank intervals (100 ms) similar to Morse code (bars depict stimulus on-times). Thestimuli were either tonal beeps (360 Hz) on sound trials or centrally fashed discs (1.5 deg radius)on visual trials. On each trial, subjects judged whether two successivesequences (either bothsound or both visual) were the ‘same’ or ‘dierent’. (B) Mean perormance (% correct trials) orcontrol and synesthete subjects (+/− SEM). All subjects had good accuracy on sound trials, butsynesthetes dramatically outperormed controls on the otherwise dicult visual trials. Movies osample trials located online at http://www.klab.caltech.edu/~saenz/hearing-motion.html.thereore emerges whereby one othe key unctions o the intact basalganglia is to link positive outcomesto subsequent behaviour, whetherpredominantly cognitive or motorin its demands, and to modiy thisrelationship accordingto motivational state.Supplemental dataSupplemental data are available athttp://www.current-biology.com/cgi/content/ ull/18/15/R648/DC1 AcknowledgmentsThis work was supported by the MedicalResearch Council, Welcome Trust, FWO- Vlaanderen and Strategisch Basisonderzoek.Reerences1. Niv, Y. (2007). Cost, benet, tonic, phasic: whatdo response rates tell us about dopamine andmotivation? Ann. NY Acad. Sci.1104, 357–376.2. Satoh, T., Nakai, S., Sato, T., and Kimura, M.(2003). Correlated coding o motivation andoutcome o decision by dopamine neurons.J. Neurosci. 23, 9913–9923.3. Brown, P., Chen, C.C., Wang, S., Kühn, A.A.,Doyle, L., Yarrow, K., Nuttin, B., Stein, J.,and Aziz, T. (2006). Involvement o humanbasal ganglia in o-line eed-back control ovoluntary movement. Curr. Biol.16, 2129–2134.4. Hamani, C., Saint-Cyr, J.A., Fraser, J., Kaplitt,M., and Lozano, A.M. (2004). The subthalamicnucleus in the context o movement disorders.Brain127, 4–20.5. Frank, M.J., Seeberger, L., and O’Reilly, R. C.(2004). By carrot or by stick: Cognitivereinorcement learning in Parkinsonism.Science 306, 1940–1943.6. Shohamy, D., Myers, C.E., Onlaor, S. Grossman,S., Sage, J., Gluck, M.A., and Poldrack,R.A. (2004). Cortico-striatal contributions toeedback-based learning: Converging datarom neuroimaging and neuropsychology.Brain127, 851–859.7. Kemp, F., Brücke, C., Kühn, A.A., Schneider,G.H., Kupsch, A., Chen, C.C., Androulidakis, A.G., Wang, S., Vandenberghe, W., Nuttin, B.,et al.(2007). Modulation by dopamine o humanbasal ganglia involvement in eedback controlo movement. Curr. Biol.17, R587–R589.8. O’Doherty, J., Dayan, P., Schultz, J.,Deichmann, R., Friston, K., and Dolan, R.J.(2004). Dissociable roles o ventral and dorsalstriatum in instrumental conditioning. Science 304, 452–454.9. Wrase, J., Kahnt, T., Schlagenhau, F., Beck, A.,Cohen, M.X., Knutson, B., and Heinz, A. (2007).Dierent neural systems adjust motor behaviorin response to reward and punishment.Neuroimage 36, 1253–1262.10. Tricomi, E.M., Delgado, M.R., and Fiez, J.A.(2004). Modulation o caudate activity by actioncontingency. Neuron41, 281–292.1Department o Neurology and2Departmento Neurosurgery, Charité-University MedicineBerlin, CVK, Berlin, Germany.3SobellDepartment o Motor Neuroscience andMovement Disorders, Institute o Neurology,London, UK.4Department o Neurosurgery,Kings College Hospital, Denmark Hill, London,UK.5Department o Physiology, Anatomy andGenetics and6Department o NeurologicalSurgery, Radclie Inrmary, Oxord, UK.7Department o Neurology and8Neurosurgery,Katholieke Universiteit Leuven, Belgium.E-mail:p.brown@ion.ucl.ac.uk
Δεν επιτρέπεται σχολιασμός στο SOUND -AUDIOTORY-SYNESTHISIA-sound/advanced electronic sound SEM 3/4-7/8